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A wide range of important crystalline solids cannot be prepared in the form of single
crystals of suitable size and quality for structural characterization by conventional single-
crystal X-ray diffraction methods. The development of techniques for crystal structure
determination from powder diffraction data is clearly important for allowing the structural
characterization of such materials. Although the structure refinement stage of the structure
determination process can now be carried out fairly routinely using the Rietveld profile
refinement technique, structure solution directly from powder diffraction data is associated
with several intrinsic difficulties. The article surveys the field of crystal structure
determination from powder diffraction data. Particular emphasis is given to the challenging
structure solution stage of the structure determination process, with illustrative case studies
highlighting the features of each of the main methods that are currently used for structure
solution from powder diffraction data. The current scope and future potential of powder
diffraction as an approach for crystal structure determination are discussed, and contem-
porary applications of this approach across several disciplines within materials chemistry
are reviewed.

1. Introduction

X-ray diffraction is undoubtedly the most important
and powerful technique for characterizing the structural
properties of crystalline solids. Single-crystal X-ray
diffraction, in particular, is now used widely and
routinely for crystal structure determination. However,
many important crystalline solids cannot be prepared
as single crystals of sufficient size and quality for
conventional single-crystal X-ray diffraction studies, and
in such cases it is essential that structural information
can be determined from powder diffraction data. In this
review, we focus on the application of powder diffraction
to determine information on the structural properties
of crystalline solids.
Crystal structure determination from diffraction data

can be divided into three stages: (1) determination of
lattice parameters and assignment of crystal symmetry
and space group, (2) structure solution, and (3) structure
refinement. In structure solution, an initial structural
model is derived directly from the experimental diffrac-
tion data. If this initial structural model is a sufficiently
good representation of the true structure, refinement
of this model against the experimental diffraction data
can be carried out to obtain a good-quality crystal
structure. For single-crystal diffraction data, both

structure solution and structure refinement calculations
can now generally be carried out in a straightforward
manner. For powder diffraction data, on the other
hand, refinement of crystal structures (usually carried
out using the Rietveld profile refinement technique1) can
now be carried out fairly routinely, whereas solution of
crystal structures directly from powder diffraction data
is a significantly greater challenge. The field of crystal
structure solution from powder diffraction data is cur-
rently an active area of research, both in the develop-
ment of new and more powerful methodologies and
improved instrumentation and in the application of
existing techniques to tackle problems of increasing
complexity. As described below, significant progress has
been made in recent years in all aspects of this field.
We now consider in more detail the difficulties as-

sociated with solving crystal structures directly from
powder diffraction data. Essentially the same informa-
tion is contained in single-crystal and powder diffraction
patterns, but in the former case this information is
distributed in three-dimensional space whereas in the
latter case the three-dimensional diffraction data are
“compressed” into one dimension. As a consequence,
there is generally considerable overlap of peaks in the
powder diffraction pattern, leading to severe ambigu-
ities in extracting the intensities I(hkl) of individual
diffraction maxima. Despite this fact, the traditional
approach for crystal structure solution from powder
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diffraction data is to attempt to extract the intensities
I(hkl) of individual reflections directly from the powder
diffraction pattern and then to use these I(hkl) data in
the types of crystal structure solution technique (e.g.,
direct methods and the Patterson method) that are used
for single-crystal diffraction data. The major difficulty
with this approach arises in extracting values of I(hkl)
that are sufficiently reliable to lead to a successful
structure solution calculation. This problem of exten-
sive peak overlap in the powder diffraction pattern
limits the complexity of structures that can be solved
successfully by such methods. As a consequence, so-
phisticated methods are now being developed to improve
the reliability of extracting intensity information for
such overlapping peaks. Virtually all the techniques
for structure solution from powder diffraction data
(including the Patterson method, direct methods, and
the method of entropy maximization and likelihood
ranking, discussed in sections 5.1-5.3, respectively)
consider values of I(hkl) extracted from the powder
diffraction pattern, and, despite the difficulties that this
entails, these approaches are nevertheless the most
widely used at the present time.
An alternative philosophy for crystal structure solu-

tion from powder diffraction data is to postulate struc-
tural models independently of the powder diffraction
data, with the suitability of these models assessed by
direct comparison of the powder diffraction patterns
calculated for these models against the experimental
powder diffraction pattern. This comparison is quanti-
fied using the profile R factor (as used in Rietveld
refinement), which considers the whole digitized inten-
sity profile (not the integrated intensities of individual
diffraction maxima) and therefore implicitly takes care
of the overlap of peaks. This approach avoids the
problematic step of extracting values of I(hkl) from the
powder diffraction pattern; no partitioning of the ex-
perimental powder diffraction profile into a set of
“single-crystal-like” intensities I(hkl) is carried out, and
the avoidance of such partitioning of the data is an
important strength of this approach. This philosophy
is embodied within the Monte Carlo and simulated
annealing methods, which are discussed in section 5.4.
Although considerable progress has been made in

recent years2-8 (see Figure 1), the solution of crystal
structures from powder diffraction data is still far from
routine, and there is still considerable potential for the
continued development and improvement of the meth-
odologies in this field. The aim of this review is to
survey the current scope and limitations of crystal
structure determination from powder diffraction data,

with particular emphasis on the structure solution stage
of the structure determination process. Here we focus
on the use of the Patterson method, direct methods, the
method of entropy maximization and likelihood ranking,
and Monte Carlo and simulated annealing methods for
structure solution, although we note that other ap-
proaches (including grid searches, energy minimization
calculations, and other computer simulation techniques
for structure prediction) have also been used. After
giving an overview of the methods presently available
for crystal structure determination from powder dif-
fraction data, the application of these methods across a
wide range of disciplines within materials chemistry is
reviewed.

2. Radiation Sources

Although a great deal of work on crystal structure
determination from powder diffraction data has made
use of conventional laboratory X-ray diffractometers,
there are significant advantages in using synchrotron
X-ray diffraction data over laboratory data. The com-
bination of high brightness and good vertical collimation
of synchrotron X-radiation can be fully exploited in the
construction of diffractometers that give data with
substantially improved signal/noise ratio and higher
resolution. With high resolution, the problem of peak
overlap is substantially alleviated, allowing a greater
amount of unambiguous intensity information to be
extracted from the powder diffraction pattern and
sometimes enabling successful determination of the
lattice parameters in cases for which this is not possible
with laboratory X-ray powder diffraction data. Fur-
thermore, the tunability of synchrotron radiation sources
allows the X-ray wavelength to be changed readily, and
this can be exploited to diminish the effects of X-ray
absorption or to give insights into the positions and site
occupancies of atoms of a specific type (by studying the
differences between powder diffraction patterns re-
corded for wavelengths on either side of an absorption
edge for the selected type of atom5).
Although it is clearly preferable to use synchrotron

X-ray powder diffraction data for structure determina-
tion, the use of synchrotron data is generally not
essential; this is a consequence of the continued im-
provements in the resolution and sensitivity of labora-
tory X-ray powder diffractometers (allowing data of
sufficiently high quality to be recorded9) and advances
in the methodology for structure determination. Clearly
the opportunity to determine crystal structures reliably
from X-ray powder diffraction data collected on labora-
tory diffractometers is opening up the field to a much
wider community of users.
The vast majority of crystal structure determinations

are carried out using X-ray diffraction data, but in
certain circumstances it may be advantageous to use
neutron diffraction data. One important difference
between neutron and X-ray diffraction is that the
relative scattering powers of atoms for neutrons and
X-rays are significantly different. In the case of X-ray
diffraction, the scattering power increases monotonically
with atomic number and hence light atoms, such as
hydrogen, are weak X-ray scatterers. Neutrons, on the
other hand, are scattered by atomic nuclei, and neutron-
scattering power varies irregularly across the periodic
table (hence atoms with similar atomic number, even

Figure 1. Number of previously unknown crystal structures
solved since 1977 from X-ray and neutron powder diffraction
data.
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isotopes of the same element, may have significantly
different neutron-scattering properties). Another im-
portant difference is that interference effects cause
X-ray scattering by an atom to diminish with increasing
scattering angle, whereas the scattering of neutrons by
an atom is essentially isotropic. As a consequence, a
neutron powder diffraction pattern contains signifi-
cantly more intensity information, particularly at high
diffraction angle, than the X-ray powder diffraction
pattern of the same material.
A small number of structures have been determined

directly from neutron powder diffraction data (examples
are given in refs 10-14), although in most cases it is
easier to solve a structure from X-ray powder diffraction
data rather than neutron powder diffraction data. With
X-ray data, it is often sufficient to locate only a small
subset of the atoms (usually the strongest scatterers)
during the structure solution stage, with the remainder
of the atoms located subsequently in the structure
refinement stage (by application of difference Fourier
techniques). With neutron data, on the other hand, it
is usually necessary to locate the majority of the atoms
during the structure solution stage, in order for subse-
quent structure refinement to be successful. For these
reasons, a good approach is to solve as much of the
structure as possible from X-ray data and to use neutron
data subsequently to locate light atoms or to distinguish
between atoms that have similar X-ray scattering
powers. A joint Rietveld refinement can then be carried
out using the X-ray and neutron diffraction data,
leading to a crystal structure determination of improved
quality. Illustrative examples of such joint refinements
are given in refs 15-18 and emphasize the complemen-
tary nature of X-ray and neutron diffraction techniques.
The subsequent discussion in this article is focused

on the use of X-ray powder diffraction data (both from
synchrotron and conventional laboratory sources) for
crystal structure solution, although all the methods
discussed are applicable to both X-ray and neutron
powder diffraction data. In section 5, the application
of each structure solution technique is illustrated by a
detailed example; all of these examples refer to the use
of X-ray powder diffraction data measured using a
conventional laboratory diffractometer.

3. Phase Problem in Crystal Structure Solution

In the diffraction pattern from a crystalline solid, the
diffraction maximum with Miller indexes (hkl) is char-
acterized by the scattering vector h in reciprocal space,
with h ) ha* + kb* + lc* (a*, b*, and c* denote the
reciprocal lattice vectors). The scattering for reflection
h is completely defined by the structure factor F(h)
which has amplitude |F(h)| and phase R(h) and is
related to the electron density F(r) within the unit cell
by

where r is the vector r ) xa + yb + zc in direct space
(a, b, and c denote the direct lattice vectors) and
integration is over all vectors r in the unit cell. From
eq 1, it follows that

where V denotes the volume of the unit cell, and the
summation is over all vectors h with integer coefficients
h, k, and l. If the values of both |F(h)| and R(h) could
be measured directly from the diffraction pattern, then
F(r) (i.e., the “crystal structure”) could be determined
directly from eq 2 by summing over the measured
reflections h (note that this would only be an ap-
proximation to F(r), as only a finite set of reflections h
is actually measured experimentally). However, while
the values of |F(h)| can be obtained experimentally (they
are related to the measured diffraction intensities I(h)),
the values of R(h) cannot be determined directly from
the experimental diffraction pattern. This constitutes
the so-called “phase problem” in crystallography. To
solve the crystal structure, it is clearly necessary to have
methods that provide an estimate of the values of the
phases R(h) that should be combined with the experi-
mentally derived values of |F(h)|.

4. Preliminary Stages of Structure
Determination

4.1. Determination of Lattice Parameters and
Space Group Assignment. An essential prerequisite
for crystal structure determination is that the lattice
parameters and the space group are known. Determi-
nation of the lattice parameters from the powder dif-
fraction pattern requires accurate determination of the
peak positions (i.e., accurate d-spacing data), which can
normally be achieved using a peak-search process,
provided all systematic errors have been eliminated
(e.g., by careful measurement of the zero-point error in
the position of the detector). Although in favorable
cases the lattice parameters can be determined from
first principles (generally feasible only for high-sym-
metry structures), it is usually necessary to use an
“autoindexing” program such as ITO,19 TREOR,20 or
DICVOL.21. These programs adopt different ap-
proaches,22 and it is valuable to have more than one
program available since experience shows that the
relative successes of different autoindexing programs
can differ from one set of powder diffraction data to
another. In general, the autoindexing programs gener-
ate several possible sets of lattice parameters that are
consistent, to a greater or lesser degree, with the set of
measured peak positions; a variety of figures of merit23,24
can be used to rank the proposed sets of lattice param-
eters.
The space group is assigned by identifying the condi-

tions for systematic absences in the indexed powder
diffraction data. If it is not possible to assign the space
group uniquely, it may be necessary to carry out the
structure solution calculation in parallel for several
different plausible space groups.
4.2. Extraction of Diffraction Intensities from

the Powder Diffraction Pattern. In the conventional
approach (adopted in the Patterson method, direct
methods and the maximum entropy method) for crystal
structure solution from powder diffraction data, the
intensities (I(h)) of individual diffraction maxima are
extracted from the experimental powder diffraction
pattern. In the ideal case, each peak in the powder
diffractogram would be individually resolved, and it
would then be straightforward to extract accurate
values of I(h). However, extraction of intensities from
the powder diffractogram is complicated by the overlap

F(h) ) |F(h)| exp(iR(h)) ) ∫F(r) exp[2πih‚r] dr (1)

F(r) ) (1/V)∑
h

|F(h)| exp[iR(h) - 2πih‚r] (2)
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of nonequivalent reflections due to (1) “accidental”
equality (or near-equality) of d spacings for nonequiva-
lent reflections, especially at high scattering angle (this
can be particularly severe for low-symmetry structures),
or (2) symmetry-imposed equality of d spacings for well-
defined groups of nonequivalent reflections [this occurs
only for high-symmetry structures; e.g., for reflections
{hkl} and {khl} in a tetragonal system with Laue group
4/m, d(hkl) ) d(khl) but I(hkl) * I(khl)].
In early work in this field, peaks that overlap signifi-

cantly were commonly ignored or assigned arbitrary
(often equal) contributions to the total intensity of the
overlapping set. However, this approach is clearly
unsatisfactory, and more sophisticated approaches for
determining reliable relative intensities from overlap-
ping peaks have been developed. The most commonly
used of these “pattern decomposition” techniques are
based on the use of Rietveld profile fitting procedures
(see section 6.2) in which the whole powder diffraction
pattern is decomposed in one step. These techniques
adopt a least-squares approach to fit a calculated profile
to the experimental powder diffraction pattern (without
the use of a structural model) by refinement of the
lattice parameters, the zero-point error, peak-shape
parameters, and parameters defining the background.
Integrated peak intensities can then be determined from
the fitted profile. The seminal work in this field was
carried out by Pawley,25 with particular reference to
neutron powder diffraction data. Specific developments
of the method for use with X-ray powder diffraction data
(for which the 2θ dependence and asymmetry of the
peak shape require more detailed consideration) have
been addressed by Toraya.26 Another widely used
profile-fitting procedure is that of Le Bail,27 in which
problems arising from negative intensities in the Pawley
method are overcome. These pattern decomposition
techniques are incorporated in a number of programs,
including ALLHKL,25 WPPF,26 GSAS,28 FULLPROF,29
LSQPROF,30 PROFIL,31 and EXTRA.32

As most approaches for structure solution from pow-
der diffraction data depend heavily on extracting reli-
able intensity information, pattern decomposition con-
stitutes an important step dictating the overall success
of these approaches. Inevitably, however, the intensi-
ties determined for overlapping peaks by pattern de-
composition contain inherent uncertainties, particularly
when the positions of the peaks in the overlapping set
are separated by less than half the half-width of the
peaks. Approaches are currently being developed to
allow the relative intensities of such overlapping peaks
to be determined accurately and include the application
of relations between the structure factors derived from
direct methods and the Patterson function (DOREES33),
an iterative procedure involving the calculation of a
squared Patterson map and subsequent back-transfor-
mation giving a new set of structure factors for the
overlapping reflections (FIPS34), a method based on
entropy maximization of a Patterson function,35,36 and
a Bayesian fitting procedure.37

5. Crystal Structure Solution from Powder
Diffraction Data

5.1. PattersonMethod. 5.1.1. Method. The Patter-
son function38

uses only the observed structure factor amplitudes |F(h)|
(determined from the measured diffraction intensities
I(h)) and does not require information on the phases of
reflections. Each peak in the Patterson map P(r)
corresponds to an interatomic vector (ri - rj) within the
unit cell, with the height of each peak proportional to
the product of the scattering powers of the atoms i and
j. In principle, the positions of atoms in the unit cell
can be deduced from the set of interatomic vectors
represented in the Patterson map. If the structure
contains a small number of atoms that scatter signifi-
cantly more strongly than the others, the interatomic
vectors between these atoms dominate the Patterson
map, allowing the positions (rj) of these atoms to be
deduced readily. For many cases of this type, the
Patterson method has been used successfully for struc-
ture solution from X-ray powder diffraction data (ex-
amples are given in refs 16, 18, and 39-44). Unfortu-
nately, if the structure does not contain a small number
of dominant scatterers, the Patterson map is densely
packed with peaks of comparable intensity, from which
it may be difficult or impossible to derive a reliable
interpretation of the positions of the atoms in the unit
cell.
The Patterson function may also be used to determine

the position of a structural fragment of well-defined
geometry (e.g., a rigid group), even if this fragment does
not contain a dominant scatterer. This interpretation
of the Patterson function arises because a structural
fragment of well-defined geometry gives rise to a well-
defined set of interatomic vectors which will be repre-
sented by a characteristic set of peaks in the Patterson
map; thus, a knowledge of molecular geometry is
exploited in this structure solution approach. In many
cases, the fragment search process is applied in Patter-
son space and is usually divided into two parts, as
follows.
(1) A rotation search to determine the orientation of

the fragment. A vector model is constructed from the
known geometry of the fragment, superimposed on the
Patterson map, and rotated into all possible orientations
until the optimum fit with the Patterson map is found.
(2) A translation search to determine the position of

the oriented fragment within the unit cell. This involves
translation of the correctly oriented fragment into all
possible positions in the asymmetric unit. The inter-
atomic vectors corresponding to each position of the
fragment are then calculated and compared with the
Patterson map derived from the experimental data to
find the position corresponding to the best fit.
Similar procedures have also been applied to fragment

searches operating in reciprocal space (PATMET45) and
in a combination of direct space and reciprocal space
(ROTSEARCH46). Patterson search routines have also
been incorporated into direct methods programs (PAT-
SEE47). These model-based Patterson methods have
been used (PATMET,48,49 ROTSEARCH,50,51 PATSEE52)
to solve the crystal structures of molecular materials
from X-ray powder diffraction data.
The number of intensity measurements I(h) required

for successful structure solution by the Patterson method
is usually somewhat smaller than for direct methods
(see section 5.2), and it may therefore be possible to

P(r) ) (1/V)∑
h

|F(h)|2 exp[-2πih‚r] (3)
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reduce the number of overlapping peaks considered in
the Patterson calculation (by truncating the experimen-
tal data at a maximum value of 2θ that is lower than
that required for direct methods). Furthermore, the
Patterson method is often able to derive reasonable
structural information from diffraction data that are
inferior in quality to that required for successful struc-
ture solution by direct methods. These features make
the Patterson method an attractive choice for structure
solution from powder diffraction data, provided the
structure is known to contain a small number of
dominant scatterers or a structural fragment of well-
defined geometry.
5.1.2. Example. We now illustrate the application

of the Patterson method to determine the previously
unknown structure of anhydrous lithium perchlorate
(LiClO4) from X-ray powder diffraction data (step size
∆2θ ) 0.02°; total data collection time ) 3 h).95 The
powder diffraction pattern was indexed using the pro-
gram TREOR, on the basis of the first 20 observable
reflections, producing the following unit cell: a ) 8.651
Å, b ) 6.913 Å, c ) 4.829 Å, R ) â ) γ ) 90° (with
figures of meritM20 ) 44, F20 ) 39 (0.007 843, 66)). The
system was assigned as orthorhombic, with systematic
absences consistent with space groups Pnma (cen-
trosymmetric) and Pn21a (noncentrosymmetric). Struc-
ture solution was initially attempted in the centrosym-
metric space group Pnma. Integrated intensities were
extracted from the powder diffraction pattern in two
ranges (10° < 2θ < 40° and 35° < 2θ < 75°) using the
Le Bail profile-fitting procedure. The data from these
two regions were then combined to give a set of 84
reflections and were then used to generate a Patterson
map, from which the position of the Cl atom was clearly
evident. After Rietveld refinement of the position of the
Cl atom, a difference Fourier synthesis revealed the
positions of all three O atoms in the asymmetric unit.
Subsequent refinement of these positions and further
difference Fourier synthesis identified the position of
the Li atom. The final Rietveld refinement of the
complete structure converged to Rwp ) 10.60%, Rp )
8.32%, RF ) 11.10%, RB ) 9.21%, and ø2 ) 1.53 for 28
variables and 3250 profile points in the range 10° < 2θ
< 75° (84 reflections) [note: a general discussion of
Rietveld refinement is given in section 6.2 and includes
definitions of these agreement factors]. The experimen-
tal and calculated X-ray powder diffraction patterns,
and the corresponding difference profile, are shown in
Figure 2. The position of the Cl atom found from the
Patterson map was close (0.54 Å) to the position of this
atom in the final refined structure.
The final refined fractional coordinates and isotropic

atomic displacement parameters for LiClO4 are given
in Table 1. As shown in Figure 3, there is a distorted
octahedral arrangement of O atoms surrounding each
Li atom. All bond lengths and bond angles in the
refined structure are within acceptable limits consistent
with the precision of the data [Cl-O bond lengths
1.43(1)-1.46(1) Å; O-Cl-O bond angles 108(1)-111(1)°;
Li-O distances 1.98(1)-2.40(1) Å]. It is relevant to note
that both the accuracy and the precision of these
structural parameters would be improved with the
combined use of X-ray and neutron powder diffraction
data in a joint refinement.

5.2. Direct Methods. 5.2.1. Method. The term
“direct methods” describes a class of statistical methods
that attempt to derive knowledge of the phases R(h)
directly from the measured diffraction intensities I(h).
The direct methods approach is based on the fact that
the observed structure factor amplitudes |F(h)| (deter-
mined from I(h)), together with the correct (but initially
unknown) values of R(h), must correspond (via eq 2) to
an electron density that is positive everywhere within
the unit cell. This imposes constraints on R(h), and by
applying probability relationships, the probable phases
(Rp(h)) of well-defined groups of reflections can be
deduced. The positions of atoms in the initial structural
model are then usually obtained from an E-map,
constructed using the trial phases Rp(h) as follows:

where |E(h)| are normalized structure factors (calcu-
lated from |F(h)|). All aspects of the direct methods
procedure for crystal structure solution are discussed
in refs 53 and 54.
The direct methods approach has become the most

widely used technique for structure solution from

Figure 2. Experimental (+), calculated (solid line), and
difference (below) powder diffraction profiles for the Rietveld
refinement of LiClO4. Reflection positions are marked.

Table 1. Final Atomic Coordinates and Isotropic Atomic
Displacement Parameters Obtained from the Rietveld

Refinement Calculation for LiClO4
a

atom site type x/a y/b z/c Uiso/Å2

Cl 4c 0.318(4) 1/4 0.543(8) 0.025(2)
O1 4c 0.149(1) 1/4 0.546(2) 0.020(3)
O2 8d 0.370(1) 0.079(1) 0.681(1) 0.021(2)
O3 4c 0.374(1) 1/4 0.261(2) 0.031(3)
Li 4b 1/2 0 0 0.069(9)
a Pnma; a ) 8.6522(4) Å, b ) 6.9152(3) Å, c ) 4.8299(2) Å.

Figure 3. Final refined crystal structure of LiClO4 showing
the octahedral coordination of ClO4

- tetrahedra around each
Li atom.

ø(r) ) (1/V)∑
h
|E(h)| exp[iRp(h) - 2πih‚r] (4)
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powder diffraction data. Unlike the Patterson method,
the direct methods approach does not rely on the
presence of a dominant scatterer or prior knowledge of
the geometry of a well-defined structural fragment, and,
in principle, it can be applied to a much greater variety
of structural problems. Although weak reflections can
often be omitted from the data used in structure solution
by Patterson methods, this is not advisable for direct
methods. These reflections play an important role in
the direct methods calculation, and their absence would
lead to errors in the normalization and phasing pro-
cesses and in the calculation of some figures of merit
used to discriminate between the correct structure
solution and incorrect structure solutions. A significant
number of such weak reflections in a powder diffracto-
gram are present as overlapping peaks, and the fact that
the intensities assigned to these reflections are often
unreliable may lead to problems in the phasing process.
Until recently, the application of direct methods to

powder diffraction data was carried out using programs
developed for single-crystal diffraction data (for example
MULTAN,55 SHELXS,56 MITHRIL,57,58 SIR,59,60 SIM-
PEL61). However, direct methods procedures optimized
for powder diffraction data have now been developed
(SIRPOW,60,62 SIMPEL63). For example, in the case of
SIRPOW, knowledge of the number of reflections in each
group of overlapping reflections and the total intensity
of each group are required. Initially, the individual
reflections within each group are assigned equal inten-
sities, and these intensities are then modified during
the calculation as more phase information is obtained.
The use of reliable intensities (importantly for weak
reflections) strengthens the process of phase determi-
nation and improves the ability of the figures of merit
to discriminate the correct structure solution.
Examples of the successful application of direct

methods in structure solution from powder diffraction
data are given in refs 44 and 64-71.
5.2.2. Example. As an example of the application of

direct methods to crystal structure solution from powder
diffraction data, we highlight the structure determina-
tion of p-methoxybenzoic acid (CH3OC6H4CO2H). This
is an “equal-atom” system (see section 8.2.2), the
structure of which was already known from single-
crystal X-ray diffraction72 (monoclinic, P21/a; a ) 16.968
Å, b ) 10.962 Å, c ) 3.968 Å, â ) 98.13°). For the
structure solution from X-ray powder diffraction data,
individual intensities were extracted from the diffrac-
togram in two ranges (7.5° < 2θ < 35° and 35° < 2θ <
75°) using the Le Bail profile-fitting procedure. These
data ranges were then combined to generate a total set
of 372 reflections (169 nonoverlapping and 203 overlap-
ping, according to a visually judged criterion (∆2θ ≈
0.05°)) which were used in the direct methods program
SIRPOW. However, the resulting solution showed only
two clear peaks (and no identifiable molecular fragment)
in the E-map, and subsequent attempts to complete and
refine this structure were unsuccessful. Closer exami-
nation of the powder diffraction pattern showed a high
degree of overlap for 2θ > 70°, so a subsequent direct
methods calculation was carried out using only the
intensity data in the range 7.5° < 2θ < 70° (306
reflections; 162 nonoverlapping and 144 overlapping).
Although no molecular fragment could be recognized
readily from the E-map, six peaks slightly higher than

the rest were used as an initial model for structure
refinement. The remaining non-hydrogen atoms were
located using difference Fourier analysis, and the
complete structure was refined, with the application of
geometric restraints, by the Rietveld refinement tech-
nique. No attempt was made to determine the positions
of the H atoms.
In Figure 4, the atomic positions established from the

direct methods calculation are compared with the cor-
responding positions in the final refined crystal struc-
ture (the distances between corresponding atoms were
in the range 0.44-0.89 Å). Although the model taken
from the structure solution stage comprised only six
atoms, it was clear in retrospect (in comparison with
the final structure) that the direct methods calculation
had actually located a further O atom.
5.3. Method of Entropy Maximization and Like-

lihood Ranking. 5.3.1. Method. The maximum en-
tropy technique is a powerful method of image recon-
struction and has been applied successfully in a wide
range of scientific fields.73-75 In crystallography, the
maximum entropy criterion has been used to examine
the crystallographic inversion problem,76 to generate
high-quality electron density maps,77,78 as a means of
partitioning the intensities of completely overlapping
reflections in powder diffraction patterns,35,36 and as an
approach for direct phase determination.79-82 Recently,
a technique for crystal structure solution, in which
phases are determined on the basis of entropy maximi-
zation and likelihood ranking,83 has been developed and
applied successfully to single-crystal X-ray diffraction
data,84 protein diffraction data,85 and electron micros-
copy data.86,87 As now described, this method has also
been used in crystal structure solution from X-ray
powder diffraction data.15,88-91

The maximum entropy and likelihood method adopts
a similar approach to conventional direct methods for
phase determination. Both methods consider an un-
known crystal structure to be composed of atoms of
known identity but unknown positions. Initially, these
positions are considered as random with a uniform
distribution in the asymmetric unit. The structure
solution process consists of the gradual removal of this
randomness. In its application to powder diffraction
data, the maximum entropy and likelihood method
handles groups of overlapping peaks in a rational
manner, enabling intensity information for these peaks
to be used productively in the structure solution process.
The procedure for structure solution from powder dif-
fraction data using the maximum entropy and likelihood
method (implemented in the program MICE84) is now
summarized.
First, the peaks in the powder diffraction pattern are

divided into two sets, according to whether they are
nonoverlapping or overlapping. For each overlapping

Figure 4. Atomic positions (filled circles) determined from
the direct methods structure solution calculation for p-meth-
oxybenzoic acid compared with the molecular structure (open
circles) in the final refined crystal structure.
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group of reflections, the intensities of the individual
reflections are summed to give a combined intensity for
the group. Both sets of reflections are then normalized
to give unitary structure factors.
The origin is defined by fixing the phases of an

appropriate number of reflections, chosen from the set
of nonoverlapping reflections and satisfying the usual
rules and criteria.54 These reflections constitute the
initial basis set. As described below, the basis set is
subsequently extended in the course of the structure
solution process by incorporating new reflections. Thus,
a “phasing tree” is constructed, with each addition of
new reflections defining a successive level of this tree.
The known phases of the reflections in the basis set

are used as the constraints in an entropy maximization
procedure that gives rise to phase extrapolation. Specif-
ically, a maximum entropy map is constructed, and the
Fourier transform of this map produces new intensity
and phase information for reflections not in the basis
set (while also reproducing the amplitudes and phases
of the basis set reflections used to generate the map).
However, when the basis set comprises only the origin-
defining reflections, the extrapolated intensities and
phases are not reliable. This situation is improved
successively at each level of the phasing tree by incor-
porating new phase information into the basis set with
the addition of selected strong reflections. The phases
of these reflections are taken as 0 or π for centrosym-
metric structures and +π/4, -π/4, +3π/4 or -3π/4 for
noncentrosymmetric structures (thus guaranteeing that
each trial phase must be within π/4 of the correct phase).
In adding new reflections to the basis set, all permuta-
tions of the phases of these new reflections are consid-
ered. The addition of new reflections with permuted
phases represents the next level of the phasing tree,
with each possible permutation of phases representing
a different node within this level. Each node is sub-
jected to constrained entropy maximization, thus updat-
ing the corresponding maximum entropy map.
At each level of the phasing tree, the most promising

nodes are identified using the likelihood function, which
evaluates the agreement between the structure factor
amplitudes extrapolated from the maximum entropy
map for the node and those from the experimental data.
Thus, the likelihood function indicates the extent to
which the experimentally determined (unphased) in-
tensities are rendered more likely by the phase choices
made for the basis set reflections for the node in
question, than under the initial assumption of a uniform
distribution. The use of overlapping reflections in the
calculation of the likelihood greatly increases the ability
to discriminate the optimum node. The nodes are
ranked in order of log-likelihood gain (LLG)88 and the
LLG values are then analyzed for phase indications
using the Student t test.90 Application of the Student t
test removes any inherent subjectivity that would be
introduced in selecting nodes on the basis of likelihood
alone. The most promising nodes are then retained, and
the next level of the phasing tree is constructed by
adding new reflections with permuted phases.
The phasing procedure and development of successive

levels of the phasing tree are continued until most
structure factors have significant phase indications or
until the centroid map92 reveals a recognizable struc-
tural model. The maximum entropy distribution as-

sociated with a node is not a traditional electron density
map. To generate a map from which positions of atoms
can be determined, the maximum entropy map is used
to calculate a centroid map in which the weights involve
normalized structure factors but the coefficients are
unitary structure factors. Both basis set and non-basis
set reflections are used to calculate the centroid map,
and it is important to emphasize that the inclusion of
overlapping reflections in this calculation generates a
centroid map that is significantly clearer than that
generated with the overlapping reflections excluded.
Recent developments in the maximum entropy and

likelihood method include the use of a more efficient
scheme for sampling permutations of trial phases based
on error-correcting codes,93 the use of envelopes in
forbidden zones,94 and the use of a fragment recycling
procedure92 in which a known fragment position is used
actively in the structure solution calculation95 (as il-
lustrated in section 5.3.3).
5.3.2. Example 1. The combined maximum entropy

and likelihood ranking technique has been applied to
determine a previously unknown molecular crystal
structure, p-toluenesulfonhydrazide (CH3C6H4SO2NH-
NH2), from X-ray powder diffraction data.89 The X-ray
powder diffractogram was indexed using the program
TREOR on the basis of the first 26 observable reflec-
tions, producing the following unit cell: a ) 18.568 Å,
b ) 5.630 Å, c ) 8.524 Å, R ) γ ) 90°, â ) 106.2° (with
figures of meritM26 ) 26, F26 ) 56 (0.009 830, 46)). The
system was assigned as monoclinic, and systematic
absences identified the space group unambiguously as
P21/n. Integrated intensities were extracted from the
powder diffraction pattern in two ranges (7.5° < 2θ <
40° and 35° < 2θ < 65°) using the Le Bail profile-fitting
procedure. The data from these two regions were then
combined, generating the intensities of 175 reflections,
of which 93 were assigned as nonoverlapping and 82
were assigned as overlapping according to a visually
judged criterion (∆2θ ≈ 0.05°). The overlapping reflec-
tions were present in 34 groups, with a maximum of
four reflections in each group, and the intensities in each
group were combined to give an effective intensity for
the group. Both the overlapping and nonoverlapping
data were entered into the direct methods program
MITHRIL to generate unitary structure factors. These
were used as input for the maximum entropy and
likelihood program MICE. The origin-defining reflec-
tions obtained from MITHRIL were used as the initial
basis set, with phases of 0 assigned to these reflections.
A further five reflections were selected and added to the
basis set; the phases (0 or π) of these five reflections
were permuted to generate 32 nodes. Entropy maxi-
mization was carried out on each node, and the log-
likelihood gain (LLG) was calculated in each case. From
analysis of the LLG values of these nodes using the
Student t test at the 10% significance level, four nodes
were retained for further consideration. The basis set
was then expanded by adding four new reflections with
permuted phases, thus generating 64 nodes (i.e., 4 ×
24) in the second level of the phasing tree. Note that
the resolution of all reflections used to enlarge the basis
set was higher than 1.78 Å. Subsequent analysis
allowed all but 16 nodes to be rejected; of these 16 nodes,
four had significantly higher LLG (2.18 (node 44), 2.38
(node 52), 2.73 (node 80), and 2.61 (node 88)) than the
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others (the next highest LLG was 1.52). From the
centroid maps constructed for each node, it was clear
that nodes 44 and 52 were almost identical, and nodes
80 and 88 were almost identical, and therefore only
nodes 52 and 80 (the nodes of highest LLG in each pair)
were studied further. The centroid map for node 52
contained two well-defined peaks with one of higher
intensity than the other, whereas the centroid map for
node 80 contained two well-defined peaks of similar
intensity. The peaks from both nodes were used (as S
and N atoms) as starting structural models for Rietveld
refinement calculations. The refinement based on node
80 did not proceed satisfactorily, and only the refine-
ment based on node 52 was pursued further. This was
perhaps expected, as only node 52 displayed a dominant
peak (corresponding to the S atom) in the centroid map.
The remaining C, O, and N atoms were located from

difference Fourier calculations (no attempt was made
to locate the H atoms). In the Rietveld refinement,
isotropic atomic displacement parameters were con-
strained according to atom type. The final Rietveld
refinement gave agreement factors Rwp ) 7.83%, Rp )
5.95%, RF ) 12.38%, RB ) 9.59%, and ø2 ) 5.57 for 59
variables and 3624 profile points in the range 7.5° <
2θ < 80° (523 reflections). Retrospective examination
of the centroid map corresponding to node 52 (as shown
in Figure 5) revealed that four C atoms were evident in
addition to the S and N atoms discussed above. Indeed,
of the top seven peaks in the map, six corresponded to
the positions of atoms in the final refined structure (the
distances between these peaks and the corresponding
atomic positions were in the range 0.33-0.82 Å).
5.3.3. Example 2. We now consider a second example

involving the application of the maximum entropy and
likelihood method to determine the crystal structure of

lithium zirconate (Li6Zr2O7). This example demon-
strates the fragment recycling procedure and the use
of codes in constructing the phasing tree. The crystal
structure of lithium zirconate was originally solved from
X-ray powder diffraction data using Patterson methods
and refined using a combination of X-ray and neutron
powder diffraction data.16 In the work presented here,
only the X-ray powder diffraction data were used. The
structure is monoclinic (space group C2/c), with a )
10.442 Å, b ) 5.988 Å, c ) 10.201 Å, â ) 100.26°. A
total of 257 integrated intensities were extracted from
the powder diffraction pattern over the range 5° < 2θ
< 90° using the Le Bail procedure. Of these reflections,
148 were assigned as nonoverlapping and 109 were
assigned as overlapping, according to a visually judged
criterion (∆2θ ≈ 0.05°). The overlapping reflections
were present in 47 groups, with a maximum of six
reflections in each group, and for each group a combined
intensity was considered. Both the overlapping and
nonoverlapping data were entered into the direct meth-
ods program MITHRIL to generate unitary structure
factors. These unitary structure factors were then used
in the maximum entropy and likelihood programMICE.
As before, the root node was created by assigning phases
to two origin-defining reflections chosen by MITHRIL.
A further seven reflections were added to the basis set,
and their phases were permuted using a Hadamard code
to give 16 nodes. Entropy maximization was carried out
on each node, and the LLG was calculated in each case.
The best eight nodes were retained, and the second
phasing level was constructed by permutation (using the
Hadamard code) of seven additional reflections on each
of these nodes, generating a further 128 nodes. After
entropy maximization of these nodes, the solutions
corresponding to several of the best (i.e., highest likeli-
hood) phase sets were inspected. The likelihood value
of the best solution (node 135) was much higher than
that of the next best solution, and the centroid map
generated from node 135 showed a very dominant peak
which was assigned as the zirconium atom.
MITHRIL was then used to process the additional

information given by the recycling fragment (the zirco-
nium atom) and to renormalize the data for use in
MICE. In the recycling procedure, an arbitrary origin
is not selected because the origin is already defined by
the fragment, hence there is no root node. Five reflec-
tions were entered as the basis set and used to generate
32 nodes. Entropy maximization was then carried out
on each node in the usual way, and both the LLG and
NS+L values were calculated in each case (NS+L83 is
a good joint indicator of maximum entropy and maxi-
mum likelihood). One node clearly had the best LLG
and NS+L values, and the centroid map generated from
this node revealed the positions of all seven remaining
atoms (Figure 6). These atomic positions were then
refined to within experimental error of the published
structure. In Table 2, the atomic positions obtained
from the maximum entropy and likelihood recycling
calculation are compared with the coordinates of the
corresponding atoms in the known structure (refined
using only the X-ray diffraction data).
For lithium zirconate, it is straightforward to locate

the zirconium atom by Patterson methods and then to
complete the structure using difference Fourier tech-
niques. However, for cases in which the position of a

Figure 5. Centroid map, viewed in projection along the b axis,
for node 52 in the structure solution calculation of p-CH3C6H4-
SO2NHNH2 by the maximum entropy and likelihood ranking
method. For comparison, the final refined position of the
molecule is overlayed on the centroid map.
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strong scatterer is not a sufficient starting model for
successful completion of the structure by difference
Fourier techniques, it is clearly essential that more
structural information can be obtained at the structure
solution stage. The application of the fragment recy-
cling procedure discussed in this example is likely to
have a major impact in such cases.
5.4. Monte Carlo and Simulated AnnealingMeth-

ods. 5.4.1. Method. Monte Carlo methods96-98 and the
related simulated annealing approach99,100 have been
employed in many fields of science including electronics,
biology, materials science, and image processing. More
recently, these techniques have been developed and
applied to crystal structure solution from X-ray powder
diffraction data.101-107 A similar approach, called the
“reverse Monte Carlo” method, has been applied suc-
cessfully to determine the structural properties of
amorphous materials by fitting structural models to
X-ray scattering and neutron-scattering data.108,109

The Monte Carlo method differs considerably from the
traditional approaches for crystal structure solution
from powder diffraction data, in that it operates in direct
space (rather than reciprocal space or Patterson space).
In particular, rather than extracting the intensities of
individual diffraction maxima directly from the powder
diffraction pattern, the strategy is to postulate struc-
tural models independently of the diffraction data. This
involves the generation of a series of structural models
{xi: i ) 1, ...,N} by randommovement of an appropriate
collection of atoms (the so-called “structural fragment”)
within the unit cell, with the acceptance or rejection of
each trial structure based (using the Metropolis impor-
tance sampling technique110) on the agreement between
the experimental powder diffractogram and the powder
diffractogram calculated for the trial structure. This
agreement between the calculated and experimental
diffraction data is assessed using the weighted profile
R factor (Rwp, defined in section 6.2) calculated over the
whole powder diffraction profile. From the large num-
ber of structures generated in the Monte Carlo calcula-
tion, the best structure is selected as the initial struc-
tural model for subsequent structure refinement.
The first structure (x1) is generally chosen as a

random position of the structural fragment in the unit
cell. A series of structures is then generated, with each
new structure not produced “from scratch” but derived
from the previous structure. The process for generating
structure xi+1 from structure xi (termed a “Monte Carlo
move”) is as follows.
(1) Starting from structure xi, the structural fragment

is subjected to a random “displacement” to generate a
trial structure xtrial. The exact form of this “displace-
ment” depends on the type of structural fragment and
may be constrained depending on symmetry and other
structural considerations. In general, the displacement
will consist of one or more of the following: (a) transla-
tion of the structural fragment by a random amount
(subject to a user-specified maximum displacement) in
a random direction; (b) rotation of the structural frag-
ment by a random amount (subject to a user-specified
maximum rotation angle) about a randomly chosen axis
passing through the center of the structural fragment;
(c) in the case of nonrigid structural fragments, random
displacements (again subject to user-specified maximum
values) in the values of internal degrees of freedom (e.g.,
torsion angles). The powder diffractogram correspond-
ing to the trial structure is then calculated, and the scale
factor is optimized using a least-squares fit of the
calculated diffraction pattern to the experimental dif-
fraction pattern (essentially a Rietveld refinement
calculation in which only the scale factor is refined). The
agreement factor for the trial structure is denoted
Rwp(xtrial).
(2) The trial structure is then accepted or rejected on

the basis of the difference Z between the value of Rwp
for the trial structure and the value of Rwp for structure
xi [i.e., Z ) Rwp(xtrial) - Rwp(xi)]. If Z e 0, the trial
structure is accepted as the new structure (i.e., xi+1 )
xtrial). If Z > 0, however, the trial structure is accepted
as the new structure (i.e., xi+1 ) xtrial) with probability
exp(-Z/S) and rejected with probability [1 -
exp(-Z/S)], where S represents an appropriate scaling
of Z, and operates in a manner analogous to kT in
conventional Monte Carlo simulation techniques.97,98 If

Figure 6. Centroid map, viewed in projection along the b axis,
for the optimum node obtained from the recycling procedure
for Li6Zr2O7. For comparison, the final refined atomic positions
are overlayed on the centroid map.

Table 2. Atomic Coordinates in the Structure Solution of
Li6Zr2O7 Obtained from the MICE Fragment Recycling

Calculation (Second Line) and the Corresponding
Coordinates Obtained in the Final Rietveld Refinement
Using the X-ray Powder Diffraction Data (First Line)a

atom site type x/a y/b z/c ∆/Å

Zr 8f 0.1822 0.1228 0.3640
0.1938 0.1223 0.3658 0.12

O5 8f 0.2552 0.3996 0.2594
0.2570 0.4340 0.2365 0.31

O4 8f 0.3786 0.3750 0.0208
0.3309 0.5009 -0.0033 0.91

O2 4e 0.0000 0.1252 0.2500
0.0168 0.1119 0.3023 0.54

Li6 8f 0.2993 0.1173 0.1128
0.3227 0.1115 0.0760 0.48

O3 8f 0.1335 0.3644 0.5067
0.1630 0.3702 0.4791 0.45

Li7 8f 0.4304 0.3947 0.3982
0.4014 0.3267 0.4003 0.51

Li8 8f 0.0614 0.3496 0.0972
0.0678 0.3840 0.0961 0.22

a For each atom, the parameter ∆ represents the distance
between the position in the structure solution and the correspond-
ing position in the final refined structure. C2/c; a ) 10.4421(1)
Å, b ) 5.9877(1) Å, c ) 10.2008(1) Å, â ) 100.255(1)°. Atoms are
listed in order of decreasing peak height in the centroid map.
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the trial structure is rejected, the new structure is taken
to be the same as the previous structure (i.e., xi+1 ) xi).
Stages 1 and 2 are repeated to generate a Markov

chain of structures xi+2, xi+3, xi+4, ..., xN. The maximum
displacements of the structural fragment and the value
of S are chosen so that the optimum proportion (ca. 40%)
of trial moves is accepted,111 giving rise to maximum
efficiency in the propagation of the Monte Carlo algo-
rithm. After a sufficiently extensive range of structural
space has been explored by the structural fragment, the
structure corresponding to lowest Rwp is considered as
the starting structural model for Rietveld refinement.
In many cases, the structural fragment considered in
the Monte Carlo calculation is only a portion of the
complete structure, and further development of the
structure is therefore required through difference Fou-
rier calculations.
As discussed in section 1, a major advantage of the

Monte Carlo technique over the conventional methods
of structure solution is that it does not directly extract
structural information from the powder diffraction
pattern, and hence the problem of extracting the
intensities of individual reflections from overlapping
groups is implicitly avoided.
It is important to emphasize that the Monte Carlo

method does not involve minimization of Rwp (except in
the case of S ) 0) but explores structural space in a
manner that gives emphasis to regions associated with
low Rwp, with the ability to escape from local minima
in Rwp. On the other hand, alternative approaches
based on minimization of Rwp would generally locate a
local minimum in Rwp close to the starting structure,
rather than the global minimum in Rwp.
The main factor limiting the efficiency of the Monte

Carlo calculation is the number of structural “degrees
of freedom” varied during the calculation. For this
reason the method is significantly more efficient when
the structural fragment can be defined by a geo-
metrically well-defined (rigid) group of atoms in which
only the position and orientation of the structural
fragment are varied in the Monte Carlo calculation. In
many cases, however, it may be necessary to define a
flexible structural fragment, requiring the variation of
internal degrees of freedom (e.g., torsion angles), with
corresponding demands in terms of computational time.
Thus, in the assessment of the efficiency and feasibility
of the Monte Carlo approach, the number of degrees of
freedom in the structural fragment is, in general, a more
important consideration than the number of atoms in
the asymmetric unit.
The simulated annealing technique also uses the

Monte Carlo algorithm to generate a series of structures,
with each trial structure accepted or rejected using
Metropolis importance sampling. However, the funda-
mental difference between the simulated annealing
approach and the Monte Carlo method described above
concerns the way in which the parameter S is handled.
The simulated annealing approach can be considered
as the application of the Metropolis algorithm at sys-
tematically decreasing values of S (analogous to de-
crease of temperature) under the control of an appro-
priate “annealing schedule”. The initial value of S is
chosen so that virtually all trial structures are accepted,
and as S is decreased, the number of trial structures
that are accepted decreases until the best structure

solution is obtained. The final structure is then used
as a starting structural model for Rietveld refinement.
In the Monte Carlo method, on the other hand, the
parameter S is generally fixed throughout the calcula-
tion so that the optimum proportion of trial structures
is accepted, with the best structure solution identified
by subsequent inspection of the series of structures
generated. Nevertheless, it may be desirable to alter
the value of S during the Monte Carlo calculation (for
example, to encourage the structural fragment to ex-
plore a wider range of structural space, or to explore
selected regions of structural space in more detail).
The Monte Carlo technique has been applied to

determine a number of crystal structures from X-ray
powder diffraction data, involving different ways of
handling the structural fragment. These include the
following:
(1) Translation of a single dominant X-ray scatterer

through the unit cell.95

(2) Independent translation of two dominant X-ray
scatterers through the unit cell.95

(3) Rotation of a rigid structural fragment around a
crystallographic center of symmetry.105

(4) Two separate Monte Carlo calculations involving
(i) in the first calculation, location of a dominant
scatterer by translation of this atom within the unit cell,
and (ii) then, after establishing the correct position of
the dominant scatterer, rotation of a rigid fragment
around the fixed position of the dominant scatterer
found in the first calculation.103

(5) Simultaneous translation and rotation of a rigid
structural fragment within the unit cell.106,107

(6) Simultaneous translation and rotation of a flexible
structural fragment within the unit cell, together with
variation of intramolecular degrees of freedom.112

5.4.2. Example. We illustrate the application of the
Monte Carlo approach for crystal structure solution
from powder diffraction data by describing our deter-
mination of the previously unknown structure of 1-meth-
ylfluorene107 (C14H12, Figure 7).
The X-ray powder diffraction pattern was indexed

using the program TREOR, on the basis of the first 23
observable reflections, producing the following unit
cell: a ) 14.278 Å, b ) 5.691 Å, c ) 12.362 Å, R ) γ )
90°, â ) 95.1° (with figures of meritM23 ) 29, F23 ) 59
(0.007 047, 56)). The system was assigned as mono-
clinic, and systematic absences allowed the space group
to be identified unambiguously as P21/n. The structural
fragment used in the Monte Carlo calculation comprised
the non-hydrogen atoms in the planar fluorenyl (C13)
group fixed at a geometry consistent with other deriva-
tives of fluorene. Although the methyl carbon atom
could readily have been included in the structural
fragment, omission of this atom leads to a more efficient
propagation of the Monte Carlo process as there is twice
the probability of locating the structural fragment
successfully [i.e., a structural fragment comprising the

Figure 7. Structural formula of 1-methylfluorene.
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fluorenyl group can fit the correct structure in two
equivalent ways, whereas a structural fragment com-
prising the fluorenyl group plus the methyl carbon atom
can fit the correct structure in only one way]. The
structural fragment was subjected to simultaneous
translation and rotation for a total of 20 000 Monte
Carlo moves, with each translation followed by 25
rotations about the center of the five-membered ring.
In each translation, the random displacement in the
position of the structural fragment was constrained such
that the maximum allowed change in each of the x, y,
and z coordinates (in an orthogonal reference frame) was
0.8 Å, and in each random rotation of the structural
fragment the maximum allowed angles of rotation about
each of three mutually perpendicular axes was (90°.
The parameter S was taken as 1.8, giving 41.5%
acceptance of trial structures. As the data at high
diffraction angle are very weak (and therefore unlikely
to give good discrimination between the correct struc-
ture and incorrect structures), Rwp was calculated only
over the restricted range 5° < 2θ < 55° in the Monte
Carlo calculation. The typical value of Rwp for “incor-
rect” structures was ca. 50-56%, the value of Rwp for
the best structure (i.e., with lowest Rwp) was 33.7%
(Monte Carlo move number 18 251 (Figure 8)), and no
other unrelated structure had Rwp below 43%. The
distribution of Rwp values for the trial structures gener-
ated in the last 4000 Monte Carlo moves is shown in
Figure 8. There is a clear discrimination in Rwp between
the best structure solution and other positions of the
structural fragment. The best structure solution was
then taken as the starting point for difference Fourier
analysis (which located the C atom of the methyl group),
and the complete structure was then refined, with the
application of geometric restraints, by the Rietveld
refinement technique. The H atoms of the fluorenyl
group were added in positions consistent with standard
geometry, whereas the H atoms of the methyl group
were not introduced into the model. For the C atoms,
a common isotropic atomic displacement parameter was
refined; for the H atoms, a common isotropic atomic
displacement parameter was also used but not refined.
Due to the presence of a large asymmetric peak at 2θ
) 9.07° in the powder diffractogram, the final Rietveld
refinement was carried out over the data range 10° <
2θ < 85°, giving agreement factors Rwp ) 5.88%, Rp )
4.35%, RF ) 10.47%, RB ) 8.55%, and ø2 ) 2.23 for 80
variables distributed over 3791 profile points (697
reflections). The experimental and calculated X-ray

powder diffraction patterns, and the corresponding
difference profile, are shown in Figure 9. All bond
lengths and bond angles in the final refined structure
are within acceptable limits consistent with the preci-
sion of the data. It should be noted that the quality of
the profile fit and the molecular geometry were im-
proved significantly by including the H atoms in the
refinement.
In Table 3 and Figure 10, the optimum position of

the structural fragment found in the Monte Carlo
calculation is compared with the positions of the non-
hydrogen atoms in the final refined crystal structure.

Figure 8. Rwp for trial structures generated in the Monte
Carlo structure solution calculation for 1-methylfluorene
versus the corresponding Monte Carlo move number. Only the
results from the last 4000 Monte Carlo moves are shown. Figure 9. Experimental (+), calculated (solid line), and

difference (bottom) powder diffraction profiles for the Rietveld
refinement of 1-methylfluorene. Reflection positions are marked.
The calculated powder diffraction profile is for the final refined
crystal structure, details of which are given in Table 3.

Table 3. Final Refined Atomic Coordinates (First Line)
for 1-Methylfluorene Obtained from Rietveld Refinement

and the Corresponding Coordinates (Second Line)
Obtained from the Monte Carlo Structure Solution

Calculationa

atom x/a y/b z/c ∆/Å

C1 0.198(1) 1.143(2) -0.035(1)
0.202 1.088 -0.009 0.52

C2 0.271(1) 0.983(2) -0.044(1)
0.280 0.934 -0.001 0.74

C3 0.299(1) 0.810(2) 0.037(1)
0.290 0.772 0.083 0.76

C4 0.239(1) 0.763(2) 0.119(1)
0.223 0.761 0.158 0.67

C5 0.165(1) 0.918(2) 0.125(1)
0.146 0.914 0.149 0.46

C6 0.097(1) 0.928(2) 0.209(1)
0.067 0.942 0.217 0.43

C7 0.086(1) 0.783(2) 0.297(1)
0.044 0.820 0.311 0.56

C8 0.013(1) 0.831(2) 0.363(1)
-0.037 0.879 0.361 0.63

C9 -0.047(1) 1.020(2) 0.336(1)
-0.095 1.059 0.317 0.60

C10 -0.039(1) 1.159(2) 0.244(1)
-0.072 1.178 0.224 0.44

C11 0.035(1) 1.113(2) 0.183(1)
0.009 1.117 0.174 0.28

C12 0.063(1) 1.242(1) 0.084(1)
0.048 1.219 0.075 0.27

C13 0.143(1) 1.100(2) 0.050(1)
0.135 1.075 0.067 0.42

C14 0.175(1) 1.337(2) -0.116(1)
a For each atom, ∆ represents the distance between the final

refined position and the position obtained from the Monte Carlo
calculation. The methyl carbon atom (omitted from the structural
fragment used in the Monte Carlo calculation) is C14. P21/n; a )
14.2973(5) Å, b ) 5.7011(2) Å, c ) 12.3733(5) Å, â ) 95.106(2)°.
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It is clear that the Monte Carlo calculation has success-
fully located, and discriminated, a position of the
structural fragment close to its true position in the
crystal structure.

6. Structure Refinement

6.1. Difference Fourier Synthesis. In favorable
cases, the positions of all the atoms in the asymmetric
unit may be determined at the structure solution stage,
although generally only a partial structural model is
obtained. In such cases, the positions of the “missing”
atoms can usually be found by difference Fourier
synthesis:

where |Fo(h)| denotes the observed structure factor
amplitude for reflection h and |Fc(h)| and Rc(h) denote
the structure factor amplitude and phase for reflection
h calculated from the structural model. The difference
Fourier map ∆F(r) reveals the discrepancies, in direct
space, between the experimental powder diffraction data
and the powder diffraction data calculated for the
structural model. The difference Fourier map has peaks
at positions in which the structural model has a deficit
of electron density (e.g., when an atom is missing from
the model), and troughs at positions in which the
structural model has an excess of electron density (e.g.,
an incorrectly placed atom or an incorrectly assigned
atom type). As specified above, the difference Fourier
calculation considers integrated intensities extracted
from the powder diffraction pattern, and peak overlap
may give rise to problems and limitations similar to
those encountered in traditional techniques for structure
solution.
The success of the difference Fourier method depends

on how much of the complete structure is represented
by the partial structural model used in the difference
Fourier synthesis. From experience, it is apparent that

structures not containing a dominant X-ray scatterer
can be completed readily by difference Fourier methods
provided at least 50% of the total electron density is
located correctly in the partial structural model. A
smaller percentage may be sufficient if the partial
structural model contains a dominant X-ray scatterer.
6.2. Rietveld Refinement Technique. In Rietveld

refinement1,113,114 of a crystal structure from powder
diffraction data, every point in a digitized powder
diffraction profile is considered as an intensity measure-
ment. The powder diffraction profile for the structural
model is calculated using the following information: (1)
lattice parameters (to determine peak positions); (2)
atomic positions and atomic displacement parameters
(to determine peak intensities); (3) 2θ-dependent ana-
lytical functions to describe the peak shapes and peak
widths; (4) a description of the background intensity.
The shape of a peak in a powder diffractogram depends
on features of both the instrument and the sample, and
different types of peak shape function are appropriate
under different circumstances. The most widely used
peak shape function for X-ray powder diffraction data
is the pseudo-Voigt function,115 which allows flexible
variation of the Gaussian and Lorentzian character of
the peak shape. Analytical functions are also used to
describe the 2θ dependence of the peak width, and the
importance of having functions that give good repre-
sentations of the 2θ dependence for different methods
of powder diffraction data collection is emphasized (see,
for example, refs 113 and 116).
In Rietveld refinement, the calculated powder diffrac-

tion pattern is compared, point by point, with the
experimental powder diffraction pattern, and selected
parameters defining the structural model and describing
the profile are adjusted by least-squares methods to give
the best fit. Several criteria can be used113,115 to assess
the agreement between the experimental and calculated
powder diffraction patterns. Definitions of the most
commonly used agreement factors are

Rwp ) 100 × (∑i wi(yi(obs) - yi(calc))
2

∑
i

wi(yi(obs))
2 )1/2 (6)

Rp ) 100 ×
∑
i

|yi(obs) - yi(calc)|

∑
i

|yi(obs)|
(7)

RF ) 100 ×
∑
k

|(Ik(obs))1/2 - (Ik(calc))
1/2|

∑
k

(Ik(obs))
1/2

(8)

RB ) 100 ×
∑
k

|Ik(obs) - Ik(calc)|

∑
k

|Ik(obs)|
(9)

Figure 10. View along the crystallographic b axis of the non-
hydrogen atoms in the final refined crystal structure (solid
lines) of 1-methylfluorene. The best position of the structural
fragment obtained from the Monte Carlo structure solution
calculation (dotted lines) is also shown for comparison.

∆F(r) )
(1/V)∑

h
(|Fo(h)| - |Fc(h)|) exp[iRc(h) - 2πih‚r] (5)
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where yi(obs) is the intensity of the ith data point in
the experimental powder diffraction profile, yi(calc) is
the intensity of the ith data point in the calculated
powder diffraction profile, wi is a weighting factor for
the ith data point, Ik(obs) is the intensity of the kth
Bragg reflection determined from the experimental
powder diffraction profile, Ik(calc) is the intensity of the
kth Bragg reflection determined from the calculated
powder diffraction profile, N is the number of data
points in the experimental powder diffraction profile and
P is the number of parameters in the refinement.
Several programs are available for carrying out Riet-

veld refinement, including GSAS,28 FULLPROF,29 PRO-
FIL,31 DBW,117 and RIETAN.118
For Rietveld refinement to be successful, the initial

structural model (obtained from the structure solution
calculation) must be a sufficiently good representation
of the correct crystal structure. In our experience,
atoms located in the structure solution to within ca. 1
Å of their correct position will generally shift readily to
their correct position upon Rietveld refinement (pro-
vided the model contains a significant amount of the
complete structure). If the initial structural model is
not a sufficiently good representation of the correct
structure, the refinement may become trapped in a false
least-squares minimum generating an incorrect struc-
ture, or the refinement may “explode” with catastrophic
shifts in the parameters defining the structural model.
In such cases, the refinement can often be stabilized by
introducing geometric restraints (soft constraints) based
on structural knowledge; these bias the refinement to
shift in the direction of structurally reasonable results,
and excessive shifts in the atomic positions are hin-
dered. In general, the additional information introduced
with the use of restraints allows a greater number of
parameters to be refined than would be possible in
unrestrained refinement from the same experimental
data and generally leads to improved results in the case
of structure refinement using powder diffraction data
of poor quality.
Restrained Rietveld refinement has also been used

as a tool in the structure solution stage of crystal
structure determination from neutron powder diffrac-
tion data119 and in combination with minimization of
intermolecular potential energy.120

7. Experimental Considerations

Before structure solution from powder diffraction data
can be attempted, it is essential that the lattice param-
eters are known. Although in some cases the lattice
parameters may already be known independently of the
powder diffraction data (e.g., from electron diffraction),
they are usually determined directly from the powder
diffraction pattern using the autoindexing procedures
discussed in section 4.1. These autoindexing calcula-
tions have a high chance of success provided the data
quality is high and provided the sample is a single
phase. However, such calculations will almost certainly

fail if the sample contains (but is not known to contain)
a crystalline impurity or a second phase of the same
compound. If the identity of an impurity or second
phase is known, the peaks arising from this phase can
be excluded from the powder diffractogram before
carrying out the autoindexing calculation. Indexing
procedures can also fail if there is significant zero-point
error in the detector or poor definition of the peak
positions (e.g., due to poor sample crystallinity or poor
instrumental resolution).
Assuming that the lattice parameters have been

determined, structure solution will succeed only if the
powder diffractogram contains reliable information on
the intrinsic relative intensities of the diffraction maxima;
this relies on there being no “preferred orientation” in
the sample. Preferred orientation arises when the
crystallites in the polycrystalline sample are oriented
preferentially in certain directions and can be particu-
larly severe when the crystal morphology is significantly
anisotropic (e.g., long needles or flat plates). The
resulting nonrandom distribution of crystallite orienta-
tions in the sample leads to the measured relative peak
intensities differing (often markedly) from the intrinsic
relative diffraction intensities, severely limiting the
ability to determine reliable structural information from
the powder diffraction pattern. The existence of pre-
ferred orientation in a polycrystalline sample can often
be detected by measuring the powder diffraction data
for the same sample in different types of sample holder
(e.g., capillary versus flat sample) or for different
measurement geometries (e.g., reflection versus trans-
mission). If there are differences in the relative peak
intensities in the diffractograms recorded in these
different ways, preferred orientation is clearly a prob-
lem. Often the effects of preferred orientation are less
severe for a sample loaded in a capillary than for other
types of sample holder, and it has also been suggested121
that end-loading sample holders reduce the extent of
preferred orientation. Other experimental approaches
for minimizing the degree of preferred orientation
include mixing the sample with an amorphous material,
or appropriate grinding to induce a crystal morphology
that is as isotropic as possible.
Even if the effects of preferred orientation cannot be

eliminated from the experimental powder diffractogram,
corrections for preferred orientation can be made ret-
rospectively once a sufficiently good structural model
is known (allowing the discrepancies between the
measured relative intensities and the intrinsic relative
intensities to be modeled mathematically). As these
corrections can, in general, be applied only in refinement
of a complete structural model,122 attempted structure
solution from powder diffraction data affected signifi-
cantly by preferred orientation is usually unsuccessful.
However, methods are currently being developed123,124
for the early detection of preferred orientation by
mathematical means and the subsequent application of
corrections based on statistical analysis of the intensi-
ties of reflections determined from pattern decomposi-
tion.
Structure solution methods based on the use of known

fragments rather than the direct extraction of intensity
data from the powder diffraction pattern may prove to
be more robust than the traditional methods for struc-

Re ) 100 × ( N - P

∑
i

wi(yi(obs))
2)1/2 (10)

ø2 ) (Rwp/Re)
2 (11)
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ture solution in allowing a valid structure solution to
be obtained from data that is subject to some degree of
preferred orientation. This has recently been illus-
trated, in the case of the Monte Carlo technique, by the
structure solution of benzoic acid from powder diffrac-
tion data known to be influenced by preferred orienta-
tion.125 Attempts to solve the structure using direct
methods were unsuccessful, whereas the structure
solution obtained from the Monte Carlo calculation
refined readily, with the use of a preferred orientation
parameter, to the known crystal structure of this
material.
A detailed general account of experimental factors

relating to the measurement of powder diffraction data
has been given in a recent review.8

8. Examples of Crystal Structure Solution from
Powder Diffraction Data

8.1. Framework Structures and Nonmolecular
Solids. The majority of crystal structures that have
been solved from powder diffraction data are framework
structures and nonmolecular ionic solids. In such cases,
Patterson techniques are often used, as location of the
dominant scatterers in the structure often provides a
sufficiently good structural model for successful comple-
tion by difference Fourier and Rietveld refinement
techniques. Representative examples include ZrKH-
(PO4)239 and Nd(OH)2NO3‚H2O41 (solved from laboratory
X-ray powder diffraction data by location of the Zr and
Nd positions respectively), MnPO4‚H2O42 (solved from
synchrotron X-ray powder diffraction data by location
of the Mn atom) and R-CrPO4

40 (solved from synchrotron
X-ray powder diffraction data by location of the Cr and
P atoms).
However, sometimes it is necessary to determine the

positions of a greater number of atoms in the structure
solution stage (particularly for structures with a larger
number of atoms in the asymmetric unit), and the direct
methods technique has been applied successfully in
many cases of this type. Examples include the follow-
ing:
(1) From laboratory X-ray powder diffraction data:

â-VO(HPO4)‚2H2O64 (structure solution located two V
atoms, two P atoms, and ten O atoms of the 18 atoms
in the asymmetric unit); â-Ba3AlF967 (structure solution
located seven Ba atoms of the 29 atoms in the asym-
metric unit).
(2) From synchrotron X-ray powder diffraction data:

LaMo5O8
126 (structure solution located all six heavy

atoms); sigma-2 clathrasil127 (structure solution located
all four Si atoms and four O atoms out of the 11
framework atoms); Ga2(HPO3)3‚4H2O66 (structure solu-
tion located two Ga atoms of the 29 atoms in the
asymmetric unit).
In all these cases, the partial structures were com-

pleted successfully using difference Fourier and Rietveld
refinement techniques.
The most complex structures (in terms of number of

atoms in the asymmetric unit) to be determined from
powder diffraction data have been solved using a
combination of synchrotron X-ray data together with
either laboratory X-ray data or neutron data. For
example, the crystal structure of La3Ti5Al15O37

17 was
solved using synchrotron X-ray data and neutron data.
Direct methods located the three La atoms and two Ti

atoms and subsequent difference Fourier synthesis
revealed 9 more metal atoms and 27 O atoms from the
synchrotron X-ray data. The 19 remaining atoms were
then located by difference Fourier techniques applied
to the neutron data. To further improve the quality of
the refinement, a neutron powder diffraction pattern
was collected at longer wavelength (improving the
resolution at high diffraction angle) and used in a joint
refinement with the X-ray diffraction data.
The importance of extracting reliable intensity infor-

mation from the powder diffraction pattern for use in
direct methods structure solution calculations is il-
lustrated by the reported structure determination34 of
the silicoaluminophosphate material SAPO-40. In this
work, the use of the FIPS procedure to determine
intensity information for overlapping peaks was found
to be essential in order for subsequent direct methods
calculations to produce a successful structure solution.
The structure solution comprised the four T atoms (i.e.,
the Al, Si, and P atoms, which were not distinguished)
and five of the ten O atoms in the asymmetric unit. The
knowledge of the framework topology, established from
the positions of the four T atoms, allowed the positions
of the five remaining O atoms to be deduced readily.
8.2. Molecular Crystals. Although a considerable

number of nonmolecular and framework crystal struc-
tures have been determined from X-ray powder diffrac-
tion data, substantially less has been achieved in the
field of molecular crystallography. In part, the chal-
lenges encountered in crystal structure solution are
greater in the case of molecular crystals. Molecular
crystals tend to have low symmetry, leading to substan-
tial overlap of peaks in the powder diffractogram.
Furthermore, for organic molecular crystals, the major-
ity of the atoms in the structure are weak X-ray
scatterers, resulting in little significant intensity at high
diffraction angles.
8.2.1. Organometallics and Organic Compounds Con-

taining Elements Heavier Than Oxygen. If the structure
contains a limited number of strong X-ray scatterers,
their positions can generally be determined using the
Patterson method, and the structure can then be
completed using difference Fourier techniques44 or by
a combination of difference Fourier techniques and
positioning additional atoms on the basis of known
geometry.128,129 However, if the strong scatterers do not
constitute a sufficiently large fraction of the complete
structure for subsequent refinement to be successful,
other methods of structure solution must be used.
Problems can also arise for structures that contain a
very strong X-ray scatterer, for which it may be difficult
to establish reliably the positions of the other atoms in
the structure from X-ray diffraction data.
The first structure solution of a molecular crystal from

powder diffraction data by direct methods was for the
previously known structure of cimetidine,130 using
synchrotron X-ray powder diffraction data. In this case,
the whole structure was identified from the E-map
obtained in the direct methods calculation. Recently,
this approach has been used to determine the previously
unknown crystal structure of chlorothiazide131 at 130
K; all 17 non-hydrogen atom positions were obtained
from the direct methods structure solution calculation.
The direct methods approach has also been applied to
solve unknown molecular crystal structures from pow-
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der diffraction data recorded using laboratory X-ray
sources.44,68,71 In these cases, the direct methods pro-
cedures yielded only partial structure solutions that
were completed by difference Fourier and Rietveld
refinement techniques. The combined maximum en-
tropy and likelihood method has also been used.89,132

Many molecules contain fragments of well-defined
geometry, and several structures have been solved using
methods based on movement of these fragments within
the unit cell, actively exploiting the knowledge of
molecular geometry in the structure solution process.
A program combining both Patterson and direct meth-
ods has been used to locate all the non-hydrogen atoms
in the structure of an anhydrous copper(II) 8-hydroxy-
quinolinato complex52 by location of the molecular model
around the fixed heavy atom position. As discussed in
section 5.4.1, the Monte Carlo approach has been used
to determine a number of molecular crystal struc-
tures103,105 in which the structural fragment comprised
only a fraction of the atoms in the asymmetric unit, with
the structures then completed using difference Fourier
and Rietveld refinement techniques. One of these
structuressm-chloro-trans-cinnamic acidsrepresents
an interesting example of structure solution in which
the dominant X-ray scatterer was actually omitted from
the structure solution calculation; the structural frag-
ment used in the Monte Carlo calculation comprised all
C and O atoms of the trans-cinnamic acid system, but
with the Cl atom omitted (inclusion of the Cl atom would
have required an internal degree of freedom to be
considered in the Monte Carlo calculation). The Cl atom
was found subsequently by difference Fourier tech-
niques. The simulated annealing structure solution
method has been used104 in the structure determination
of Li3[Co(CN)5]‚2DMF from synchrotron X-ray powder
diffraction data, with the Co(CN)5 moiety and two DMF
molecules located in the structure solution calculation.
A three-dimensional search procedure (P-RISCON133),

involving comparison of calculated and observed inte-
grated intensities, has also been applied to determine
several crystal structures, including [HgRu(CO)4]4134 (by
location and orientation of the Hg4Ru4 fragment) and
polymeric silver imidazolate.135

8.2.2. “Equal-Atom” Organic Crystals. The problems
encountered in solving “equal atom” structures (e.g.,
organic compounds containing no atom heavier than
oxygen) are particularly severe. For these structures,
our experience has shown that a substantial proportion
(at least 50%) of the non-hydrogen atoms must be
located correctly in the structure solution calculation
in order for subsequent structure refinement to be
successful. In addition, the lack of prominent peaks in
electron density maps produced during structure solu-
tion of “equal atom” structures often makes the identi-
fication of atomic positions difficult and unreliable. To
our knowledge, only one previously unknown “equal
atom” organic structure (formylurea69) has been solved
from X-ray powder diffraction data using direct meth-
ods. All other structures of this type that have been
solved from powder diffraction data contain a well-
defined fragment of known geometry (usually a planar
fragment constituting a significant proportion of the
scattering matter). The approaches used to solve these
structures have included calculation of the orientation
and translation vector of the fragment (POSIT136), a

combined Patterson and trial-and-error method,137 a
method based on the use of atom-atom potentials,138
and Patterson fragment search methods (first demon-
strated for a number of previously known organic
structures,48,49 and recently applied to determine the
crystal structure of the 2-(3,4-dihydroxyphenyl)-R-nit-
ronyl nitroxide radical51). More recently, the Monte
Carlo method has been applied to solve the crystal
structures of p-methoxybenzoic acid,106 1-methylfluo-
rene107 and fluorescein.112 A simulated annealing ap-
proach has also been applied successfully to solve the
known crystal structure of benzene from simulated
X-ray powder diffraction data.102

9. Future Prospects

The above discussion has demonstrated the feasibility
of solving crystal structures from powder diffraction
data and has illustrated the scope and limitations of the
methods that are currently available for this purpose.
All of the methods described have a significant role to
play in the future, and it is important to establish
precisely the circumstances under which each method
represents the best approach for crystal structure
solution. It is only when this knowledge has been
established that it will be possible to decide, a priori,
which method should be chosen for any particular class
of structural problem or for any particular set of powder
diffraction data.
Although significant progress has been made in recent

years in the application of the methods for structure
solution described in this review, there is considerable
scope for the development of new methods for attacking
the structure solution stage of the structure determi-
nation process. One approach that may prove to be
particularly powerful is to combine the structure solu-
tion methods described above with computer simulation
techniques that allow the prediction of crystal struc-
tures. With the increasing availability of reliable
potential energy parametrizations for many types of
solid, and progress in the development of computational
methods for crystal structure prediction, it is likely that
a combined approach will emerge in the near future as
a powerful technique for crystal structure solution from
powder diffraction data. The rapidly evolving direct
space methods for crystal structure solution from pow-
der diffraction data hold particular promise as a key
component of such a combined approach.
In summary, recent developments in methodology for

structure solution and other stages of the structure
determination process, together with continuing devel-
opments in instrumentation for recording powder dif-
fraction data of improved quality, promise an optimistic
outlook for the field of crystal structure determination
from powder diffraction data, and we confidently predict
that the future will yield considerable new information
on a wide range of important materials that have
hitherto defied structural characterization.
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